Four Special Number Systems

When you add, subtract, multiply or divide the "real numbers" used in everyday life, you always get another real number. Three generalizations of the real numbers also behave in this way. Many physicists believe that all four of these "division algebras" underlie the laws of physics.

R Real numbers

All the numbers on (1-D) number line.
One defining characteristic of reals is that their square is never negative.
e.g. $2^{2}=4$ and also $(-2)^{2}=4$

Complex numbers

Reals used in conjunction with an unconventional "imaginary" unit called i.

One defining characteristic of i is that its square is negative. ie. $\mathrm{i}^{2}=-1$

(H) Quaternions

Reals used in conjunction with three unconventional units called i, j and k .

Multiplication of quaternions
is noncommutative: Swapping
the order of elements changes the answer.

Multiplication follows a cyclic pattern, where multiplying neighboring elements results in the third:
Moving with arrows gives a positive answer: i $\times \mathrm{j}=\mathrm{k}$
Moving against arrows gives a negative answer: $\mathrm{j} \times \mathrm{i}=-\mathrm{k}$

(D) Octonions

Reals used in conjunction with seven unconventional units: $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$ and $e_{7}\left(e_{1}, e_{2}\right.$ and e_{4} are comparable to the quaternions' i, j and kJ .

Multiplication of octonions is
nonassociative - it matters how they are grouped.

Their multiplication rules are encoded in the "Fano plane." Multiplying two neighboring elements on a line results in the third element on that same line. Imagine additional lines that close the loop for each group of three elements (e.g., the dashed line).
Moving with arrows gives a positive answer: e.g. $\boldsymbol{e}_{5} \times \boldsymbol{e}_{2}=\boldsymbol{e}_{3}$ and $\boldsymbol{e}_{6} \times \boldsymbol{e}_{3}=\boldsymbol{e}_{4}$

Moving against arrows gives a negative answer: e.g. $\Theta_{1} \times \Theta_{7}=-\Theta_{3}$ and $\Theta_{6} \times \Theta_{5}=-\Theta_{1}$

To see their nonassociative property, multiply three elements $\mathbf{e}_{5}, \mathbf{e}_{2}, \mathbf{e}_{4}$
$\left.\begin{array}{l}\text { Grouping them like this ... }\left(e_{5} \times e_{2}\right) \times e_{4}=\left(e_{3}\right) \times e_{4}=e_{6} \\ \text { But grouping them like this ... } e_{5} \times\left(e_{2} \times e_{4}\right)=e_{5} \times\left(e_{1}\right)=-e_{6}\end{array}\right\}$ Different

